If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $
| -6=-15+x/5 | | 0.5x+7=-8 | | (1/2)x+7=-8 | | 13+-2x=22 | | 6x+35×2=26 | | 5x-10-3x+3+2x=20-x-4-3+3× | | 2x+2-1-1x=2 | | (-3/7)(m+5)=3+2m | | 13+2a=39 | | 11=(8z+7)/3 | | 11=(8z+7/3) | | 16x+14+9-6x-30x+12=32x12 | | 10x+15=7x-5 | | 7x-5=12x-5 | | 35x-27=17 | | 7x-3-4=7 | | 1/x=0.00528541226 | | 25+5x=35+4x | | 25+5x20=35+4x20 | | 12=0.2(x) | | (x+7)^(1/2)-(2x)^(1/2)-1=0 | | (x+7)^1/2-(2x)^1/2-1=0 | | 14-(4400/x)-(4400/x+60)=0 | | 14-4400/x-4400/x+60=0 | | √(x+7)-√(2x)-1=0 | | 6x7=5x7+ | | 14=4400/x+4400/x+60 | | x(4)=x+7 | | 3 + 2y = 25 | | 4z−3z=11 | | 60+2=110+2x | | -(2x-5)=-2(3x+4)+19 |